
EPFL Workshop on Logic Synthesis and Emerging Technologies

Lausanne, Switzerland, September 27, 2017

6

Quantum circuit example

7

• States that cannot be characterized using only local correlations

• Example: the EPR state (after Einstein, Podolsky, and Rosen)

(also called “EPR pair”)

• In optics, EPR pairs can be

generated e.g. using parametric
downconversion

Entangled states

Entangled state between photons emitted
with same wavelength (i.e., same color) but

with orthogonal polarizations H and V. At the
intersection points the polarization is

undefined, but different, resulting in a state
of the form 1/2(|H|V + e i|V|H).

2

1001 

[Picture courtesy of IQOQI (Zeilinger,Weinfurter), Innsbruck] 8

Interference: the double-slit experiment
Experiment A (“Lee Marvin style”): a gun shoots bullets through 2 holes.
Probability for outcome at x is given by summation of two probabilities.

Experiment B (“Water waves”): a source emits water waves. Probability
for final outcome at point x also depends on phases of incoming waves.

[Pictures credit: R. Feynman, FLP vol I]

Interference example as circuit:

9

Why garbage is fatal for interference
• By inserting polarization filters, the paths can be made distinguishable. The interference pattern disappears.

•Quantum eraser experiment: ([Wheeler ‘78], [Scully et al, ‘82 and ‘99]): “Erase” polarization information after
the photon passed the slits. The interference pattern re-appears!

Example using reversible functions:
𝑥 0 |0⟩ ↦ 𝑥 𝑓 𝑥 |𝑔 𝑥 ⟩

Example using reversible functions:
𝑥 0 |0⟩ ↦ 𝑥 𝑓 𝑥 |0⟩

[Pictures credit: Wikipedia]
10

R
ev

er
si

b
le

Quantum compiling

Quantum computer

Quantum algorithm

Error correction

{ ,H,T}

≈ HTHTHTHTHTHTHTH
THTHTHTHTHTHTH...

11

REVS

8/11/2016 M. Roetteler @ MSR QuArC

Single
qubit

synthesis

Reversible computing: why do we care?

• Arithmetic:

– Factoring: just needs “constant” modular arithmetic

– ECC dlogs: need generic modular arithmetic

– HHL: need integer inverses; Newton type methods

• Amplitude amplification:

– Implementation of the “oracles”, e.g., for search, collision etc.

– Implementation of walk operators on data structures

• Quantum simulation:

– Addressing/indexing functions for sparse matrices

– Computing Hamiltonian terms on the fly
12

Fact: The set {Toffoli, CNOT, NOT} is
universal for reversible computing:
any even permutation on n qubits can
be written as a sequence of Toffoli,
CNOT, and NOT gates. [Toffoli’80],
[Fredkin/Toffoli’82]

Example:

Universal reversible gate set: Toffoli gates

Main motivation: How can we find efficient implementations of reversible
circuits in terms of efficient Toffoli networks?
How can we do this starting from irreversible descriptions in a programming
language like Python or Haskell or F# or C?
Can we trade time (circuit depth) for space (#qubits) in a meaningful way?

13

𝐺

⟩|1

0 ⊗𝑘 𝐻⊗𝑘

𝐻

𝐺 𝐺𝐺 𝑈𝑓
𝐻

𝐻

𝐻

𝐻

=

|−〉|−〉|−〉|−〉

𝑈𝑓

|−〉

=

AES

AES

AES

⟩|0

⟩|0

AES−1

AES−1

AES−1 ⟩|0

⟩|0

c1

c2

c3|−〉

|−〉 |−〉

[Grassl, Langenberg, R., Steinwandt, PQCrypto’16]
14

An example at scale: SHA-2
Initialize hash values

h0 := 0x6a09e667

h1 := 0xbb67ae85

…

h7 := 0x5be0cd19

Initialize constants

k[0..63] := 0x428a2f98, 0x71374491, 0xb5c0fbcf, …

Do preprocessing

break message into 512-bit chunks (16 32bit ints)

Expand to 64 32 bit ints as follows:

Create W: a 64 entry array of 32 bit ints

Copy the massage into w[0..15] and do:

for each chunk

for i from 16 to 63

s0 := (w[i-15] ≫ 7) ⊕ (w[i-15] ≫ 18) ⊕ (w[i-15] ≫ 3)

s1 := (w[i-2] ≫ 17) ⊕ (w[i-2] ≫ 19) ⊕ (w[i-2] rshift 10)

w[i] := w[i-16] + s0 + w[i-7] + s1

Initialize working variables to current hash value:

a := h0

…

h := h7 Compression function main loop:

Do compression rounds

Add the compressed chunk to the current hash value:

h0 := h0 + a

…

h7 := h7 + h

digest := hash := h0 :: h1 :: h2 :: h3 :: h4 :: h5 :: h6 :: h7

Hash function:

[Source: Wikipedia] 15

SHA-2: hand-optimized reversible circuit

16

Benchmark “algorithms”

Margolus gate Toffoli gate

Bernstein-Vazirani Hidden shift
Classical
functions

17

• Data sheet with fidelities

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.35 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.77

Experiments on quantum HW: hidden shifts

[Linke et al, Proc. Nat. Acad. Science, 2017]

18

Reversible embeddings

Example:

Replace each gate with a reversible one: (e.g., = Toffoli gate)

19

• Replacing each gate with a reversible one works fine, however, it produces
“garbage”, i.e., help registers will be in a state different from 0 at the end.

• There is a way out of this dilemma: the Bennett trick

Idea: compute forward, copy the result, “uncompute” the garbage by running the
computation backwards.

Problem: this leads to a marge quantum memory footprint.

How to avoid garbage?

20

Cleaning up the ancilla (scratch) qubits

T2

T1

Tn Tn
-1

T2
-1

T1
-1

0

0

0

0

0

0

0
result

21

Pebble game: case of 1D chain

Example:

Rules of the game: [Bennett, SIAM J. Comp., 1989]
• n boxes, labeled i = 1, …, n
• in each move, either add or remove a pebble
• a pebble can be added or removed in i=1 at any time
• a pebble can be added of removed in i>1 if and only if there is a pebble in i-1
• 1D nature arises from decomposing a computation into “stages”

1 2 3 4

i

1 1
2 2
3 3
4 4
5 3
6 2
7 1

22

Pebble game: 1D chain w/space constraints

Example: (n=3, S=3)

Imposing resource constraints:
• only a total of S pebbles are allowed
• corresponds to reversible algorithm with at most S ancilla qubits

1 2 3 4

i

1 1
2 2
3 3
4 1
5 4
6 3
7 1
8 2
9 1

23

Dynamic programming: Allows to find best strategy
for given number of steps n to be performed and
given space resource constraint S which is the
number of available pebbles.

This works ok for 1D chains. For general graphs the
problem of finding the optimal strategy is difficult
(PSPACE complete problem) -> need heuristics

#steps

time

Optimal pebbling strategies: 1D chains

24

Circuit synthesis for classical subroutines
Example: compute integer division 𝑥 ↦ 2𝑛/𝑥,
Where 𝑥 is an 𝑛-bit (unsigned) integer and the
result is rounded to the closest integer.

At design level: start from high-level implementations
of division function in Verilog. We considered:
• Integer long division (divide 2𝑛 = 𝑞𝑥 + 𝑟)
• Newton-Raphson

At logic synthesis level:
• Convert Verilog to logical netlist in AIG format

(And-Inverter Graphs) using tool ABC
• Convert AIG to ESOP format (Exclusive Sums of

Products) using tool XOR-cism
• Convert ESOP to Toffoli networks using different

tools (REVS, RevKit)
• Also, we considered LUT based synthesis

Several passes through the above for various parameter
settings that allow T-count/space/compile time tradeoffs.

Design space: [Soeken, R, Wiebe, De Micheli, DATE’17], LUTs: [DAC’17] 25

Implementation of Shor’s algorithm on 2n+2 qubits

Basic inspiration: apply tricks similar to the above to use “dirty” ancillas
for optimization (Barenco et al, PRA’95) arXiv:1611.07995 27

Carry prediction with dirty ancillas

Based on this, on can build constant folded modular arithmetic (+,*,exp)

[Haener, R., Svore, QIC 2017]
[Gidney, arXiv:1706.07884]

28

Simulating the entire modular multiplication

• Built Toffoli network for modular-multiplication for bit sizes relevant for RSA (1024-8192)
• Simulated networks in LIQUi|> using Toffoli simulator
• Metrics for entire Shor algorithm: #qubits = 2𝑛 + 2, #Toffoli-gates = 64𝑛3 log 𝑛 + 29.45𝑛3

controlled modular
multiplication

[Haener, R., Svore, QIC 2017]

29

7925869954478333033347085841480059687

73797585736421996073433034145576787281

8152135381409304740185467

35324619344027701212726049781984643686

71197400197625023649303468776121253679

423200058547956528088349

27997833911221327870829467638722601621

0704467869554285375600099293261284001

07609345671052955360856061822351910951

3657886371059544820065767750985805576

13579098734950144178863178946295187237

869221823983

Classical: 𝑂(exp 𝑐 𝑛1/3 log 𝑛 2/3)

Quantum: 𝑂(𝑛2 log 𝑛 2log
∗ 𝑛) Example: Edwards curves x2 + y2 = 1 − d ·x2·y2 over reals

for d = 300 (red), d = √8 (yellow) and d = −0.9 (blue).

[Image credit: wikipedia]

Recent result: circuit for Shor’s algorithm for ECC dlogs:

[Roetteler, Naehrig, Svore, Lauter, arxiv: 1706.06752] 31

[Bernstein, Lange: Database of explicit ECC formulas: http://www.hyperelliptic.org/EFD/]

32

33

[B. Kaliski, IEEE Trans. Comp. 44(8), 1995]

• Requires to handle a WHILE loop

(with known upper bound (here: 2n))

• Implemented in LIQUi|>, including

P-192, P-224, P-256, P-384, P-521
34

𝑢
-𝑣

𝑠

𝑟

𝑥(𝑖)

𝑦(𝑖)

𝑎

𝑓

𝑘

- +

INC

•2

/2

•2

/2

/2

•2
+

-

•2

/2

+

these qubits can be reused

35

36

37

