

A complete, scalable, quantum system

APPLICATIONS + SW

5

CRYOGENIC COMPUTER CONTROL SW

2

QUANTUM COMPUTER

Nitrogen fixation

Carbon

Materials science

Machine learning

Quantum "Hello, World"

```
HelloWorld-e2e - Microsoft Visual Studio
                                  Team Tools Architecture Test
                                                      - ▶ Start - ♬ _ 를 돌 때 표 열 및 해 해 제 글을 D - 참 찮 뿐 글
                                 Debug → Any CPU
   Teleport.qb 💠 🗙 Teleport.g.cs
     1 ⊡operation () EPR (Qubit q1, Qubit q2) {
             Body {
                  H (q1)
      4
                  CNOT (q1,q2)
     5
      6
        □operation () Teleport (Qubit msg, Qubit here, Qubit there) {
     9
             Body {
                  EPR (here, there)
     10
                  CNOT (msg, here)
     11
                 H (msg)
     12
    13
     14
                  let m here = M (here)
                  if (m here == One) {
     15
                      X (there)
     16
     17
     18
     19
                  let m msg = M (msg)
     20
                  if (m msg == One) {
                      Z (there)
     21
     22
     23
     24
     25
        □operation (Result) TeleportTest (Result msg) {
             Body {
     27 Ė
                  mutable res = Zero
     28
                  using (qubits = Qubit[3]) {
     29
                     let msgQ = qubits[0]
     30
     31
     32
                      // Set msgQ to message state
                      SetQubit (msg, msgQ)
    33
     34
                      Teleport (msgQ, qubits[1], qubits[2])
     35
     36
    37
                      set res = M (qubits[2])
     38
     39
                  return res
     40
     41
     42
```

Overview

Quantum entanglement and interference

Reversible computing

Avoiding garbage by "un"-computing Design space exploration

Quantum memory management Working with "dirty" qubits

Cryptanalysis of ECC signatures
Libraries for modular arithmetic

Quantum circuit example

$$H\otimes\mathbf{1}_{2}=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}\otimes\mathbf{1}_{2}$$

$$\begin{vmatrix}0\rangle&H&&&\\H&&&&\\\end{pmatrix}$$

$$Prob(\mathsf{meas.}\ |00\rangle)=0.5$$

$$\begin{vmatrix}0\rangle&&&\\\end{pmatrix}$$

$$\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\otimes|0\rangle$$

$$\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$$

$$|00\rangle\rightarrow|00\rangle\\ |01\rangle\rightarrow|01\rangle\\ |10\rangle\rightarrow|11\rangle\\ |11\rangle\rightarrow|10\rangle$$

Entangled states

- States that cannot be characterized using only local correlations
- Example: the EPR state $\frac{|01\rangle |10\rangle}{\sqrt{2}}$ (after Einstein, Podolsky, and Rosen)

(also called "EPR pair")

• In optics, EPR pairs can be generated e.g. using parametric downconversion

Entangled state between photons emitted with same wavelength (i.e., same color) but with orthogonal polarizations H and V. At the intersection points the polarization is undefined, but different, resulting in a state of the form $1/\sqrt{2(|H\rangle|V)} + e^{i\alpha}|V\rangle|H\rangle$).

Interference: the double-slit experiment

Experiment A ("Lee Marvin style"): a gun shoots bullets through 2 holes. Probability for outcome at x is given by summation of two probabilities.

Experiment B ("Water waves"): a source emits water waves. Probability for final outcome at point x also depends on **phases** of incoming waves.

Interference example as circuit:

$$|0\rangle - H - H - -$$

Why garbage is fatal for interference

• By inserting polarization filters, the paths can be made distinguishable. The interference pattern disappears.

Example using reversible functions: $|x\rangle|0\rangle|0\rangle \mapsto |x\rangle|f(x)\rangle|g(x)\rangle$

•Quantum eraser experiment: ([Wheeler '78], [Scully et al, '82 and '99]): "Erase" polarization information after the photon passed the slits. The interference pattern re-appears!

Example using reversible functions: $|x\rangle|0\rangle|0\rangle \mapsto |x\rangle|f(x)\rangle|0\rangle$

Quantum compiling

REVS Reversible Quantum algorithm Single qubit synthesis ≈ HTHTHTHTHTHTH THTHTHTHTHTH XError correction Quantum computer 8/11/2016 M. Roetteler @ MSR QuArC

Reversible computing: why do we care?

Arithmetic:

- Factoring: just needs "constant" modular arithmetic
- ECC dlogs: need generic modular arithmetic
- HHL: need integer inverses; Newton type methods
- Amplitude amplification:
 - Implementation of the "oracles", e.g., for search, collision etc.
 - Implementation of walk operators on data structures
- Quantum simulation:
 - Addressing/indexing functions for sparse matrices
 - Computing Hamiltonian terms on the fly

Universal reversible gate set: Toffoli gates

Fact: The set {Toffoli, CNOT, NOT} is universal for reversible computing: any *even* permutation on n qubits can be written as a sequence of Toffoli, CNOT, and NOT gates. [Toffoli'80], [Fredkin/Toffoli'82]

Example:

Main motivation: How can we find efficient implementations of reversible circuits in terms of efficient Toffoli networks?

How can we do this starting from irreversible descriptions in a programming language like Python or Haskell or F# or C?

Can we trade time (circuit depth) for space (#qubits) in a meaningful way?

Zooming into a quantum algorithm: Grover

An example at scale: SHA-2

Hash function:

```
Initialize hash values
h0 := 0 \times 6a09 = 667
h1 := 0xbb67ae85
h7 := 0x5be0cd19
Initialize constants
k[0..63] := 0x428a2f98, 0x71374491, 0xb5c0fbcf, ...
Do preprocessing
break message into 512-bit chunks (16 32bit ints)
Expand to 64 32 bit ints as follows:
Create W: a 64 entry array of 32 bit ints
Copy the massage into w[0..15] and do:
for each chunk
          for i from 16 to 63
                     s0 := (w[i-15] \gg 7) \oplus (w[i-15] \gg 18) \oplus (w[i-15] \gg 3)
                     s1 := (w[i-2] \gg 17) \oplus (w[i-2] \gg 19) \oplus (w[i-2] rshift 10)
                     w[i] := w[i-16] + s0 + w[i-7] + s1
          Initialize working variables to current hash value:
          a := h0
          h := h7 Compression function main loop:
          Do compression rounds
          Add the compressed chunk to the current hash value:
          h0 := h0 + a
          h7 := h7 + h
digest := hash := h0 :: h1 :: h2 :: h3 :: h4 :: h5 :: h6 :: h7
```

SHA-2: hand-optimized reversible circuit

Benchmark "algorithms"

a

Margolus gate

Bernstein-Vazirani

Toffoli gate

Experiments on quantum HW: hidden shifts

$$\overline{P}_{success} = 0.35$$

$$\overline{P}_{success} = 0.77$$

[Linke et al, Proc. Nat. Acad. Science, 2017]

Reversible embeddings

How to avoid garbage?

- Replacing each gate with a reversible one works fine, however, it produces "garbage", i.e., help registers will be in a state different from 0 at the end.
- There is a way out of this dilemma: the Bennett trick

$$|x\rangle \ket{0} \ket{0} \ket{0} \mapsto |x\rangle \ket{f(x)} \ket{garbage(x)} \ket{0} \\ \mapsto |x\rangle \ket{f(x)} \ket{garbage(x)} \ket{f(x)} \\ \mapsto |x\rangle \ket{0} \ket{0} \ket{f(x)}$$

Idea: compute forward, copy the result, "uncompute" the garbage by running the computation backwards.

Problem: this leads to a marge quantum memory footprint.

Cleaning up the ancilla (scratch) qubits

• Replace each gate with a reversible one [Bennett, IBM JRD'73]:

Pebble game: case of 1D chain

Rules of the game: [Bennett, SIAM J. Comp., 1989]

- n boxes, labeled i = 1, ..., n
- in each move, either add or remove a pebble
- a pebble can be added or removed in i=1 at any time
- a pebble can be added of removed in i>1 if and only if there is a pebble in i-1
- 1D nature arises from decomposing a computation into "stages"

Pebble game: 1D chain w/space constraints

Imposing resource constraints:

- only a total of S pebbles are allowed
- corresponds to reversible algorithm with at most S ancilla qubits

Example: (n=3, S=3)

Example: (n=3, S=3)

1

2
2
3
3
4
1
5
4
6
3
7
1
8
2
1
2
3
4
9
1

#

Optimal pebbling strategies: 1D chains

Dynamic programming: Allows to find best strategy for given number of steps n to be performed and given space resource constraint S which is the number of available pebbles.

This works ok for 1D chains. For general graphs the problem of finding the optimal strategy is difficult (PSPACE complete problem) -> need heuristics

Circuit synthesis for classical subroutines

Example: compute integer division $x \mapsto 2^n/x$, Where x is an n-bit (unsigned) integer and the result is rounded to the closest integer.

At design level: start from high-level implementations of division function in Verilog. We considered:

- Integer long division (divide $2^n = qx + r$)
- Newton-Raphson

At logic synthesis level:

- Convert Verilog to logical netlist in AIG format (And-Inverter Graphs) using tool ABC
- Convert AIG to ESOP format (Exclusive Sums of Products) using tool XOR-cism
- Convert ESOP to Toffoli networks using different tools (REVS, RevKit)
- Also, we considered LUT based synthesis

Several passes through the above for various parameter settings that allow T-count/space/compile time tradeoffs.

Dirty qubits

Implementation of Shor's algorithm on 2n+2 qubits

Basic inspiration: apply tricks similar to the above to use "dirty" ancillas for optimization (Barenco et al, PRA'95)

arXiv:1611.07995

Carry prediction with dirty ancillas

[Haener, R., Svore, QIC 2017] [Gidney, arXiv:1706.07884]

Based on this, on can build constant folded modular arithmetic (+,*,exp)

Simulating the entire modular multiplication

[Haener, R., Svore, QIC 2017]

- Built Toffoli network for modular-multiplication for bit sizes relevant for RSA (1024-8192)
- Simulated networks in LIQUi|> using Toffoli simulator
- Metrics for entire Shor algorithm: #qubits = 2n + 2, #Toffoli-gates = $64n^3 \log(n) + 29.45n^3$

29

Breaking ECC crypto

Or: why we need powerful quantum software libraries

Breaking RSA and elliptic curve signatures

Integer factorization

07609345671052955360856061822351910951 13579098734950144178863178946295187237 869221823983

Best known methods to factor *n*-bit numbers*:

Classical: $O(\exp(c n^{1/3} (\log n)^{2/3}))$

Quantum: $O(n^2 \log n 2^{\log^* n})$

Basis Diocresta/Isslarithonysotion

[Roetteler, Naehrig, Svore, Lauter, arxiv: 1706.0675

^{*:} In practice, Shor's quantum algorithm scales as $O(n^3 \log n)$.

Example: ECC point addition

```
ook http://www.hyperelliptic.org/EFD/oldefd/projective.html
                                                           Montgomery dblp: Peter L. Montgomery
                                                                           arXiv.org Search
                                                                                            Ook Explicit-Formulas Databa... X
      View Favorites Tools Help

▼ □  □  □ ▼ Page ▼ Safety ▼ Tools ▼  ② ▼  □ □
                              X Find: knez
1998 Cohen/Miyaji/Ono, formula (3), reported as "12M + 2S":
       K<a,b,X1,Y1,X2,Y2>:=FieldOfFractions(PolynomialRing(Rationals(),6));
       R<Z1,Z2>:=PolynomialRing(K,2);
       S:=quo<R|Y1^2*Z1-X1^3-a*X1*Z1^2-b*Z1^3,Y2^2*Z2-X2^3-a*X2*Z2^2-b*Z2^3>;
       x1:=X1/Z1; v1:=Y1/Z1;
       x2:=X2/Z2; v2:=Y2/Z2;
       lambda:=(y2-y1)/(x2-x1);
       x3:=lambda^2-x1-x2; y3:=lambda*(x1-x3)-y1;
       // here are the formulas:
       u := Y2 \times Z1 - Y1 \times Z2;
       v := X2 * Z1 - X1 * Z2;
       A := 11^2 \times 71 \times 72 - v^3 - 2 \times v^2 \times X1 \times 72:
       X3:=v*A:
       Y3:=u*(v^2*X1*Z2-A)-v^3*Y1*Z2;
       Z3:=v^3*Z1*Z2;
       S!(x3-X3/Z3); S!(y3-Y3/Z3);
```

High-level structure of the quantum algorithm

Phase estimation framework:

- Except for Hadamard H, rotations R_i and measurements, all gates in these circuits can be implemented over the Toffoli gate set.
- This allows to construct the circuit and simulate it on a classical machine.
- Precise resource estimates can be obtained from reference implementation.

Montgomery inversion

Algorithm MONTINVERSE

Inputs: a, b, n, where a is odd, a > b > 0, and n is the number of bits in a Output: "Not relatively prime," or $b^{-1}2^n \mod a$

```
First phase u \leftarrow a, v \leftarrow b, r \leftarrow 0, s \leftarrow 1 k \leftarrow 0 while v > 0 do

if u is even then u \leftarrow u/2, s \leftarrow 2s else if v is even then v \leftarrow v/2, r \leftarrow 2r else if u > v then u \leftarrow (u - v)/2, r \leftarrow r + s, s \leftarrow 2s else v \leftarrow (v - u)/2, s \leftarrow r + s, r \leftarrow 2r k \leftarrow k + 1 if u \neq 1 then return "Not relatively prime" if r \geq a then r \leftarrow r - a
```

[B. Kaliski, IEEE Trans. Comp. 44(8), 1995]

```
Second phase
for i \leftarrow 1 to k - n do
if r is even then r \leftarrow r/2
else r \leftarrow (r + a)/2
return a - r
```

- Requires to handle a WHILE loop (with known upper bound (here: 2n))
- Implemented in LIQ*Ui*|>, including P-192, P-224, P-256, P-384, P-521

Quantum Montgomery arithmetic

Quantum circuits to attack ECC dlog

Implementing point addition: affine Weierstrass form

1: sub_const_modp $x_1 x_2$;

 $// x_1 \leftarrow x_1 - x_2$

2: ctrl_sub_const_modp y_1 y_2 ctrl;

 $// y_1 \leftarrow [y_1 - y_2]_1, [y_1]_0$

3: inv_modp $x_1 t_0$;

4: mul_modp $y_1 t_0 \lambda$;

5: mul_modp $\lambda x_1 y_1$;

6: inv_modp $x_1 t_0$;

7: squ_modp λt_0 ;

8: ctrl_sub_modp x_1

9: ctrl_add_const_m

10: squ_modp λt_0 ;

11: mul_modp $\lambda x_1 y_1$;

12: inv_modp $x_1 t_0$;

13: mul_modp $t_0 y_1 \lambda$;

14: inv_modp $x_1 t_0$;

15: ctrl_neg_modp x_1

16: ctrl_sub_const_m

17: $add_const_modp x$

Modular arithmetic circuit	# of	# Toffoli		
	total	ancillas	gates	
add_const_modp, sub_const_modp	2n	n	$16n \log_2(n) - 26.9n$	
ctrl_add_const_modp, ctrl_sub_const_modp	2n+1	n	$16n \log_2(n) - 26.9n$	
ctrl_sub_modp	2n+4	3	$16n\log_2(n) - 23.8n$	
ctrl_neg_modp	n+3	2	$8n\log_2(n) - 14.5n$	
mul_modp (dbl/add)	3n + 2	2	$32n^2\log_2(n) - 59.4n^2$	
mul_modp (Montgomery)	5n + 4	2n+4	$16n^2 \log_2(n) - 26.3n^2$	
squ_modp (dbl/add)	2n+3	3	$32n^2\log_2(n) - 59.4n^2$	
squ_modp (Montgomery)	4n + 5	2n+5	$16n^2 \log_2(n) - 26.3n^2$	
inv_modp	$7n + 2\lceil \log_2(n) \rceil + 9$	$5n + 2\lceil \log_2(n) \rceil + 9$	$32n^2\log_2(n)$	

Comparing quantum attacks

	ECDLP in $E(\mathbb{F}_p)$			Factoring of RSA modulus N				
	simulation results			interpolation from [18]				
$\lceil \log_2(p) \rceil$	#Qubits	#Toffoli	Toffoli	Sim time	$\lceil \log_2(N) \rceil$	#Qubits	#Toffoli	
bits		gates	depth	sec	bits		gates	
110	1014	$9.44 \cdot 10^{9}$	$8.66 \cdot 10^{9}$	273	512	1026	$6.41\cdot10^{10}$	
160	1466	$2.97\cdot 10^{10}$	$2.73 \cdot 10^{9}$	711	1024	2050	$5.81\cdot10^{11}$	
192	1754	$5.30\cdot10^{10}$	$4.86 \cdot 10^{10}$	1 149	_	_	_	
224	2042	$8.43 \cdot 10^{10}$	$7.73 \cdot 10^{10}$	1 881	2048	4098	$5.20\cdot10^{12}$	
256	2330	$1.26 \cdot 10^{11}$	$1.16 \cdot 10^{11}$	3 848	3072	6146	$1.86\cdot10^{13}$	
384	3484	$4.52\cdot 10^{11}$	$4.15\cdot 10^{11}$	17 003	7680	15362	$3.30\cdot10^{14}$	
521	4719	$1.14\cdot 10^{12}$	$1.05\cdot 10^{12}$	42 888	15360	30722	$2.87 \cdot 10^{15}$	

- Our implementation of ECC dlog (ECDLP) for size n scales as $448n^3 \log_2 n + O(n^3)$ Toffoli gates and $9n + \lceil \log_2 n \rceil + 10$ qubits. For RSA the scaling is $64n^3 \log_2 n + O(n^3)$ and 2n + 2 qubits.
- Timings with respect to LIQUi|> running on HP ProLiant DL580 (4 Xeons @ 2.30GHz and 3TB memory)
- For example, bit size n=256 corresponds to ECDLP used in bitcoin curve **secp256k1**
- Confirms estimates by Proos & Zalka and implies that ECDLP is easier quantum target than RSA.

WWW.MICROSOFT.COM/QUANTUM

Learn more about our approa Get started with Quantum Invent the future

