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Quantum circuit example
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• States that cannot be characterized using only local correlations

• Example: the EPR state                         (after Einstein, Podolsky, and Rosen)

(also called “EPR pair”)

• In optics, EPR pairs can be 

generated e.g. using parametric 
downconversion

Entangled states

Entangled state between photons emitted 
with same wavelength (i.e., same color) but 

with orthogonal polarizations H and V. At the 
intersection points the polarization is 

undefined, but different, resulting in a state 
of the form 1/2(|H|V + e i|V|H).
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[Picture courtesy of IQOQI (Zeilinger,Weinfurter), Innsbruck] 8



Interference: the double-slit experiment
Experiment A (“Lee Marvin style”): a gun shoots bullets through 2 holes. 
Probability for outcome at x is given by summation of two probabilities.

Experiment B (“Water waves”): a source emits water waves. Probability 
for final outcome at point x also depends on phases of incoming waves. 

[Pictures credit: R. Feynman, FLP vol I]

Interference example as circuit:
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Why garbage is fatal for interference
• By inserting polarization filters, the paths can be made distinguishable. The interference pattern disappears. 

•Quantum eraser experiment: ([Wheeler ‘78], [Scully et al, ‘82 and ‘99]): “Erase” polarization information after
the photon passed the slits. The interference pattern re-appears!

Example using reversible functions:
𝑥 0 |0⟩ ↦ 𝑥 𝑓 𝑥 |𝑔 𝑥 ⟩

Example using reversible functions:
𝑥 0 |0⟩ ↦ 𝑥 𝑓 𝑥 |0⟩

[Pictures credit: Wikipedia]
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Quantum compiling

Quantum computer

Quantum algorithm

Error correction

{ ,H,T}
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Reversible computing: why do we care? 

• Arithmetic:

– Factoring: just needs “constant” modular arithmetic

– ECC dlogs: need generic modular arithmetic

– HHL: need integer inverses; Newton type methods

• Amplitude amplification: 

– Implementation of the “oracles”, e.g., for search, collision etc. 

– Implementation of walk operators on data structures

• Quantum simulation: 

– Addressing/indexing functions for sparse matrices

– Computing Hamiltonian terms on the fly
12



Fact: The set {Toffoli, CNOT, NOT} is  
universal for reversible computing: 
any even permutation on n qubits can 
be written as a sequence of Toffoli, 
CNOT, and NOT gates. [Toffoli’80], 
[Fredkin/Toffoli’82]

Example:

Universal reversible gate set: Toffoli gates

Main motivation: How can we find efficient implementations of reversible 
circuits in terms of efficient Toffoli networks? 
How can we do this starting from irreversible descriptions in a programming 
language like Python or Haskell or F# or C? 
Can we trade time (circuit depth) for space (#qubits) in a meaningful way? 
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[Grassl, Langenberg, R., Steinwandt, PQCrypto’16]
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An example at scale: SHA-2
Initialize hash values 

h0 := 0x6a09e667 

h1 := 0xbb67ae85 

… 

h7 := 0x5be0cd19 

Initialize constants 

k[0..63] := 0x428a2f98, 0x71374491, 0xb5c0fbcf, … 

Do preprocessing 

break message into 512-bit chunks (16 32bit ints)

Expand to 64 32 bit ints as follows:  

Create W: a 64 entry array of 32 bit ints 

Copy the massage into w[0..15] and do:

for each chunk 

for i from 16 to 63 

s0 := (w[i-15] ≫ 7) ⊕ (w[i-15] ≫ 18) ⊕ (w[i-15] ≫ 3) 

s1 := (w[i-2] ≫ 17) ⊕ (w[i-2] ≫ 19) ⊕ (w[i-2] rshift 10) 

w[i] := w[i-16] + s0 + w[i-7] + s1 

Initialize working variables to current hash value:

a := h0 

… 

h := h7 Compression function main loop:

Do compression rounds 

Add the compressed chunk to the current hash value:

h0 := h0 + a 

… 

h7 := h7 + h 

digest := hash := h0 :: h1 :: h2 :: h3 :: h4 :: h5 :: h6 :: h7

Hash function:

[Source: Wikipedia] 15



SHA-2: hand-optimized reversible circuit
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Benchmark “algorithms”

Margolus gate Toffoli gate

Bernstein-Vazirani Hidden shift 
Classical 
functions
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• Data sheet with fidelities

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.35 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.77

Experiments on quantum HW: hidden shifts

[Linke et al, Proc. Nat. Acad. Science, 2017]
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Reversible embeddings

Example:

Replace each gate with a reversible one: (e.g.,           = Toffoli gate          )

19



• Replacing each gate with a reversible one works fine, however, it produces  
“garbage”, i.e., help registers will be in a state different from 0 at the end.

• There is a way out of this dilemma: the Bennett trick

Idea: compute forward, copy the result, “uncompute” the garbage by running the 
computation backwards.

Problem: this leads to a marge quantum memory footprint.

How to avoid garbage?
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Cleaning up the ancilla (scratch) qubits
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Pebble game: case of 1D chain

Example:

Rules of the game: [Bennett, SIAM J. Comp., 1989]
• n boxes, labeled i = 1, …, n
• in each move, either add or remove a pebble
• a pebble can be added or removed in i=1 at any time
• a pebble can be added of removed in i>1 if and only if there is a pebble in i-1
• 1D nature arises from decomposing a computation into “stages”

1 2 3 4

#    i

1 1
2 2
3 3
4 4
5 3
6 2
7 1
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Pebble game: 1D chain w/space constraints

Example: (n=3, S=3)

Imposing resource constraints:
• only a total of S pebbles are allowed
• corresponds to reversible algorithm with at most S ancilla qubits

1 2 3 4

#    i

1 1
2 2
3 3
4 1
5 4
6 3
7 1
8 2
9 1

23



Dynamic programming: Allows to find best strategy 
for given number of steps n to be performed and 
given space resource constraint S which is the 
number of available pebbles. 

This works ok for 1D chains. For general graphs the 
problem of finding the optimal strategy is difficult 
(PSPACE complete problem) -> need heuristics

#steps

time

Optimal pebbling strategies: 1D chains
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Circuit synthesis for classical subroutines
Example: compute integer division 𝑥 ↦ 2𝑛/𝑥, 
Where 𝑥 is an 𝑛-bit (unsigned) integer and the 
result is rounded to the closest integer. 

At design level: start from high-level implementations
of division function in Verilog. We considered:
• Integer long division (divide 2𝑛 = 𝑞𝑥 + 𝑟)
• Newton-Raphson 

At logic synthesis level: 
• Convert Verilog to logical netlist in AIG format

(And-Inverter Graphs) using tool ABC
• Convert AIG to ESOP format (Exclusive Sums of 

Products) using tool XOR-cism
• Convert ESOP to Toffoli networks using different 

tools (REVS, RevKit)
• Also, we considered LUT based synthesis

Several passes through the above for various parameter 
settings that allow T-count/space/compile time tradeoffs. 

Design space: [Soeken, R, Wiebe, De Micheli, DATE’17], LUTs: [DAC’17] 25





Implementation of Shor’s algorithm on 2n+2 qubits

Basic inspiration: apply tricks similar to the above to use “dirty” ancillas 
for optimization (Barenco et al, PRA’95) arXiv:1611.07995 27



Carry prediction with dirty ancillas

Based on this, on can build constant folded modular arithmetic (+,*,exp)

[Haener, R., Svore, QIC 2017]
[Gidney, arXiv:1706.07884]
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Simulating the entire modular multiplication

• Built Toffoli network for modular-multiplication for bit sizes relevant for RSA (1024-8192)
• Simulated networks in LIQUi|> using Toffoli simulator
• Metrics for entire Shor algorithm: #qubits = 2𝑛 + 2, #Toffoli-gates = 64𝑛3 log 𝑛 + 29.45𝑛3

controlled modular
multiplication

[Haener, R., Svore, QIC 2017]

29





7925869954478333033347085841480059687

73797585736421996073433034145576787281

8152135381409304740185467

35324619344027701212726049781984643686

71197400197625023649303468776121253679

423200058547956528088349

27997833911221327870829467638722601621

0704467869554285375600099293261284001

07609345671052955360856061822351910951

3657886371059544820065767750985805576

13579098734950144178863178946295187237

869221823983

Classical: 𝑂(exp 𝑐 𝑛1/3 log 𝑛 2/3 )

Quantum: 𝑂(𝑛2 log 𝑛 2log
∗ 𝑛) Example: Edwards curves x2 + y2 = 1 − d ·x2·y2 over reals

for d = 300 (red), d = √8 (yellow) and d = −0.9 (blue). 

[Image credit: wikipedia]

Recent result: circuit for Shor’s algorithm for ECC dlogs:

[Roetteler, Naehrig, Svore, Lauter, arxiv: 1706.06752] 31



[Bernstein, Lange:  Database of explicit ECC formulas: http://www.hyperelliptic.org/EFD/]
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[B. Kaliski, IEEE Trans. Comp. 44(8), 1995]

• Requires to handle a WHILE loop 

(with known upper bound (here: 2n))

• Implemented in LIQUi|>, including 

P-192, P-224, P-256, P-384, P-521
34
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